

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digit	ales I			Obligatoria			
CODIGO:	UNIDADES:			REQUISITOS:			
2234	2234 4			2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE	SEMESTRE:
5	3		2			ESTUDIO: 5	7mo

PROPÓSITO

Esta asignatura permitirá al estudiante reforzar los conocimientos en el área de la lógica digital, y lo introducirá en el mundo de la electrónica digital. Enseñará los principios y técnicas de diseño de las diferentes familias de circuitos integrados (TTL, CMOS, DTL, RTL, ECL), sistemas combinacionales y sistemas secuenciales, uso de dispositivos comerciales de diversas tecnologías, así como, la estructura básica de un computador, lo que dará el estudiante una base y apoyo fundamental para su próximo desenvolvimiento profesional.

OBJETIVO GENERAL

Al término de esta asignatura los estudiantes deben ser capaces de diseñar, y/o analizar un diseño existente de, sistemas combinacionales y secuenciales; emitiendo opinión acertada en cuanto a su aplicación, funcionamiento y uso.

OBJETIVOS TERMINALES

- 1- Adquirir conocimientos básicos en el área de la electrónica digital.
- **2-** Aplicar las técnicas de diseño y análisis para circuitos combinacionales.
- **3-** Diseñar y analizar circuitos secuenciales asincrónicos y sincrónicos.
- **4-** Utilizar, analizar y especificar el funcionamiento de los bloques constitutivos de un computador.

OBJETIVOS ESPECÍFICOS

1- Adquirir conocimientos básicos en el área de la electrónica digital

1.1- FAMILIAS LÓGICAS.

- 1.1.1 Diseñar compuertas utilizando transistores, diodos y resistencias como componentes básicos.
- 1.1.2 Definir las características eléctricas de las compuertas diseñadas.
- 1.1.3 Describir cómo funcionan las compuertas básicas a nivel de componentes.
- 1.1.4 Explicar que es el FAN-OUT de una compuerta.
- 1.1.5 Determinar el margen de ruido de un dispositivo.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
ESCOLLA.	TAGOLIAD.	DESDE: HASTA:	/

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digit	ales I			Obligatoria			
CODIGO:	UNIDADES:	NIDADES:			REQUISITOS:		
2234	4			2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE: 7mo
						5	

- 1.1.6 Calcular la disipación de potencia de un dispositivo.
- 1.1.7 Interpretar el producto velocidad potencia como medida de funcionamiento.
- 1.1.8 Definir las características operacionales y parámetros básicos de las familias lógicas más comunes (DTL, RTL, TTL, MOS, CMOS, ECL).
- 1.1.9 Utilizar las hojas de características para obtener información sobre un dispositivo específico.
- 1.1.10 Establecer la diferencia entre salidas totem-pole, y salidas colector abierto.
- 1.1.11 Entender y aplicar las limitaciones y usos de las diferentes etapas de salida.
- 1.1.12 Comparar las características de las familias TTL y CMOS.
- 1.1.13 Implementar la interfaz entre los dispositivos TTL y CMOS.
- 1.1.14 Enumerar ventajas y desventajas de la familia TTL.
- 1.1.15 Enumerar ventajas y desventajas de la familia CMOS.
- 1.1.16 Enumerar ventajas y desventajas de la familia ECL.
- 1.1.17 Describir cómo funcionan los dispositivos de tres estados.
- **2-** Aplicar técnicas de diseño y análisis para circuitos combinacionales.

2.1- CIRCUITOS COMBINACIONALES BÁSICOS.

- 2.1.1 Definir circuito combinacional.
- 2.1.2 Escribir la expresión booleana de salida de cualquier circuito lógico combinacional.
- 2.1.3 Desarrollar la tabla de verdad a partir de la expresión de salida de un circuito lógico combinacional, o de la descripción operacional del circuito.
- 2.1.4 Simplificar un circuito lógico combinacional a su forma mínima.
- 2.1.5 Diseñar un circuito lógico combinacional para una expresión booleana dada.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
LOCULLA.	TAGGETAD.	DESDE: HASTA:	/

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digit	ales I			Obligatoria			
CODIGO:	CODIGO: UNIDADES:			REQUISITOS:			
2234	4			2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE:
						5	

2.1.6 Utilizar compuertas NAND o NOR para implementar cualquier función lógica combinacional

2.2- DISPOSITIVOS COMBINACIONALES COMERCIALES.

- 2.2.1 Describir el funcionamiento de codificadores, decodificadores, multiplexores, demultiplexores, comparadores, conversores de código.
- 2.2.2 Implementar, codificadores, decodificadores, multiplexores, demultiplexores, comparadores, conversores de código, con compuertas básicas.
- 2.2.3 Estudiar las hojas de especificaciones de codificadores, decodificadores, multiplexores, demultiplexores, comparadores, conversores de código comerciales.
- 2.2.4 Utilizar codificadores, decodificadores, multiplexores, demultiplexores, comparadores, conversores de código comerciales en el diseño de circuitos combinacionales.
- **3-** Diseñar y analizar circuitos secuenciales asincrónicos y sincrónicos.

3.1- CIRCUITOS SECUENCIALES.

- 3.1.1 Definir circuitos secuenciales.
- 3.1.2 Describir el funcionamiento de circuitos secuenciales.
- 3.1.3 Clasificar los circuitos secuenciales.

3.2- SECUENCIALES ASINCRÓNICOS.

- 3.2.1 Describir el funcionamiento de circuitos secuenciales asincrónicos.
- 3.2.2 Diseñar circuitos secuenciales asincrónicos.
- 3.2.3 Implementar circuitos secuenciales asincrónicos.
- 3.2.4 Analizar circuitos secuenciales asincrónicos.

3.3- LATCH Y FLIP-FLOP.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	,	VIGENCIA	HOJA
LOOOLLA.	TAGGETAD.	DESDE:	HASTA:	1

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digit	ales I			Obligatoria			
CODIGO:	UNIDADES:	NIDADES:			REQUISITOS:		
2234	4			2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE: 7mo
						5	

- 3.3.1 Describir el funcionamiento de un latch.
- 3.3.2 Describir el funcionamiento de un flip-flop.
- 3.3.3 Establecer las diferencias entre un latch y un flip-flop.
- 3.3.4 Analizar en las hojas de especificaciones las características de latch's y flipflop's básicos.
- 3.3.5 Utilizar puertas lógicas para implementar latch's y flip-flop's como circuitos secuenciales asincrónicos.

3.4- SECUENCIALES SINCRÓNICOS.

- 3.4.1 Describir el funcionamiento de circuitos secuenciales sincrónicos.
- 3.4.2 Diseñar circuitos secuenciales asincrónicos.
- 3.4.3 Emplear flip-flop's en el diseño de circuitos secuenciales sincrónicos.
- 3.4.4 Implementar circuitos secuenciales sincrónicos.
- 3.4.5 Analizar circuitos secuenciales sincrónicos.

3.5- DISPOSITIVOS LÓGICOS PROGRAMABLES.

- 3.5.1 Describir el funcionamiento de los Dispositivos lógicos programables (DLP).
- 3.5.2 Implementar circuitos secuenciales con DLP (memorias, PAL, GAL).

3.6- CONTADORES.

- 3.6.1 Describir el funcionamiento de los circuitos contadores.
- 3.6.2 Exponer las diferencias entre contadores asincrónicos y sincrónicos.
- 3.6.3 Analizar los diagramas de tiempo de los contadores.
- 3.6.4 Analizar los circuitos contadores.
- 3.6.5 Determinar la secuencia de un contador.
- 3.6.6 Diseñar contadores que puedan tener cualquier secuencia de estados determinada.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
EGOGELA.	TAGGETAD.	DESDE: HASTA:	/

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digit	ales I			Obligatoria			
CODIGO:	CODIGO: UNIDADES:			REQUISITOS:			
2234	4			2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE:
						5	

- 3.6.7 Describir el funcionamiento de un registro de desplazamiento.
- **4-** Utilizar, analizar y especificar el funcionamiento de los bloques constitutivos de un computador.

4.1- INTRODUCCIÓN A LOS MICROPROCESADORES.

- 4.1.1 Especificar y analizar la estructura interna de un sistema básico.
- 4.1.2 Especificar y analizar la estructura interna de un microprocesador.
- 4.1.3 Definir y describir el funcionamiento de la Unidad Central de Proceso.
- 4.1.4 Definir y describir el funcionamiento de la Unidad de Control.
- 4.1.5 Definir y describir el funcionamiento de la Unidad Aritmético Lógica.
- 4.1.6 Detallar los registros del microprocesador.

4.2- BUSES.

- 4.2.1 Definir bus.
- 4.2.2 Catalogar según sus características los diferentes Buses.
- 4.2.3 Especificar y analizar la estructura externa de un microprocesador básico.
- 4.2.4 Diferenciar y explicar los modos de direccionamiento.

4.3- INSTRUCCIONES.

- 4.3.1 Definir instrucción.
- 4.3.2 Explicar que es formato de instrucción.
- 4.3.3 Definir ciclo de instrucción
- 4.3.4 Clasificar y especificar las diferentes instrucciones según las operaciones que ejecutan. (Aritméticas. Lógicas. Transferencia. Booleanas. Bifurcación).

4.4- MEMORIA.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:		VIGENCIA	HOJA
ESCOLLA.	PACOLIAD.	DESDE:	HASTA:	1

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digita	ales I			Obligatoria			
CODIGO:	UNIDADES:			REQUISITOS:			
2234		4		2217, 2233			
HORAS/SEMANA:	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE	SEMESTRE:
5	3		2			ESTUDIO: 5	7mo

- 4.4.1 Definir Memoria.
- 4.4.2 Clasificar los diferentes tipos de memoria según su utilización.

4.5- UNIDADES DE ENTRADA/SALIDA.

- 4.5.1 Definir comunicación paralela.
- 4.5.2 Explicar los principios básicos de la comunicación paralela.
- 4.5.3 Especificar el funcionamiento de puertos paralelos.
- 4.5.4 Definir comunicación serial.
- 4.5.5 Explicar los principios básicos de la comunicación serial.
- 4.5.6 Especificar el funcionamiento de puertos seriales.
- 4.5.7 Generación de señales de control I/O.
- 4.5.8 Relacionar los dispositivos periféricos con los sistemas de entrada/salida.

4.6- PROGRAMACIÓN.

4.6.1 Usar los comandos y facilidades de los programas ensamblador y simulador en computadores personales.

CONTENIDO

PROGRAMA SINÓPTICO

Familias lógicas. Sistemas combinacionales básicos. Sistemas secuenciales. Arquitectura de computadores.

PROGRAMA DETALLADO

FAMILIAS LÓGICAS.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
LOCULLA.	TAGGETAD.	DESDE: HASTA:	/

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digitales I			Obligatoria				
CODIGO:	UNIDADES:			PADES: REQUISITOS:			
2234		4		2217, 2233			
HORAS/SEMANA:	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE	SEMESTRE:
5	3		2		GOI LIVIGADO.	ESTUDIO:	7mo
						5	

Familias de circuitos lógicos. Características generales de las familias lógicas más usadas (TTL, CMOS, ECL). Niveles de tensión y corriente. Márgenes de ruido. Análisis de las especificaciones de las diferentes familias lógicas. Acoplamiento entre familias lógicas. Dispositivos de tres estados.

SISTEMAS COMBINACIONALES BÁSICOS.

Circuitos combinacionales. Codificadores. Decodificadores. Conversores de código. Multiplexores. Demultiplexores.

SISTEMAS SECUENCIALES.

Circuitos secuenciales. Secuenciales asincrónicos. Flip-flop. Latch. Secuenciales sincrónicos. Memorias. Arreglos lógicos programables. Contadores.

ARQUITECTURA DE COMPUTADORAS.

Introducción a los microprocesadores. Unidad lógica y aritmética. Unidad de control. Buses. Lógica de funcionamiento. Instrucciones. Memorias. Unidades de entrada y salida. Programación.

PROGRAMA DE LABORATORIO

FAMILIAS LÓGICAS Y CIRCUITOS COMBINACIONALES.

Diseñar y efectuar las pruebas de funcionamiento de sistemas combinacionales.

DISEÑO DE CIRCUITOS SECUENCIALES.

Diseñar y efectuar las pruebas de funcionamiento de sistemas secuenciales.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
EGOGELA.	TAGGETAD.	DESDE: HASTA:	/

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digitales I				Obligatoria			
CODIGO:	UNIDADES:			REQUISITOS:			
2234		4		2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE: 7mo
						5	

ARQUITECTURA DE COMPUTADORAS.

EMSAMBLADOR Y SIMULADOR: Comandos y facilidades de programas ensambladores y simuladores, para microprocesadores, en computadoras personales.

REQUISITOS

Haber aprobado las asignaturas:

Lógica Digital.

Electrónica II.

PROGRAMACIÓN CRONOLÓGICA

El tiempo total destinado a esta asignatura se distribuirá de la siguiente manera:

TEORÍA	LABORATORIO		
TEMA	HORAS	TEMA	HORAS
1	8	1	6
2	6	2	6
3	14	3	4
4	14		
TOTALES	42		16

HORAS DE CONTACTO

La asignatura comprende:

42 horas de teoría.

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
LOGOLLA.	TAGGETAD.	DESDE: HAST	A: /

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digitales I			Obligatoria				
CODIGO:	UNIDADES:			REQUISITOS:			
2234		4		2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE: 7mo
						5	

16 horas de laboratorio.

6 horas de evaluación.

Lo que permite una distribución semanal de:

3 horas de teoría

1 hora de práctica.

2 horas de laboratorio.

PLAN DE EVALUACIÓN

La calificación del alumno se obtendrá de la aplicación de los siguiente instrumentos:

TEORÍA.

Instrumento	Contenido A Evaluar	Valor Porcentual
Examen parcial (1 ^{ro})	Tema 1 y Tema 2	20%
Examen parcial (2 ^{do})	Tema 3	20%
Examen parcial (3 ^{er})	Tema 4	20%
Quices, Tareas e Int. en clase	Tema en tratamiento	10%
	SUBTOTAL DE TEORÍA	·: 70%

LABORATORIO.

Instrumento	Contenido A Evaluar	Valor Porcentual
Práctica Nº 1	Tema 1	10%
Práctica Nº 2	Tema 2	15%

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
LOCOLLA.	TAGGETAD.	DESDE: HASTA:	/

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digitales I			Obligatoria				
CODIGO: UNIDADES:			REQUISITOS:				
2234	4			2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE: 7mo
						5	

Práctica N° 3 Tema 3 5%

SUBTOTAL DE LABORATORIO: 30%

Prácticas: 60% Informe + 40% Funcionamiento.

NOTA DEFINITIVA: 70% teoría + 30% de laboratorio.

NOTA: La calificación de definitiva de la asignatura se obtiene de la aplicación de los porcentajes expuestos, siempre y cuando el estudiante acumule un mínimo de 27 puntos en la suma de los tres exámenes parciales.

Normas:

- ⇒ La falta injustificada a una (1) práctica de laboratorio implica reprobar el laboratorio.
- ⇒ En los días acordados para cada práctica se debe entregar un informe escrito del trabajo desarrollado (Sin Prorrogas), el cual tendrá el siguiente contenido:
- ⇒ Identificación de la práctica que se realiza.
- ⇒ Objetivo de la práctica.
- ⇒ Planteamiento o enunciado del problema a resolver.
- ⇒ Razonamiento de la solución que se plantea.
- ⇒ Base teórica que sustente dicho razonamiento.
- ⇒ Diagramas: lógico, conexión, tiempo.
- ⇒ Conclusiones
- ⇒ Anexos

APROBADO EN CONSEJO DE ESCUELA:	APROBADO EN CONSEJO DE FACULTAD:	VIGENCIA	HOJA
EGGGELA.	TAGGETAB.	DESDE: HASTA:	/

ESCUELA DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE ELECTRÓNICA

ASIGNATURA:				TIPO DE ASIGNATURA:			
Sistemas Digitales I				Obligatoria			
CODIGO:	UNIDADES:			REQUISITOS:			
2234		4		2217, 2233			
HORAS/SEMANA: 5	TEORÍA:	PRÁCTICA:	LABORATORIO:	SEMINARIO:	TRABAJO SUPERVISADO:	HORAS TOTALES DE ESTUDIO:	SEMESTRE: 7mo
						5	

- ⇒ Los informes son individuales
- ⇒ El alumno debe asistir al laboratorio con sus montajes ya desarrollados y funcionando, acompañados del informe respectivo.
- ⇒ Para tener derecho a reparación el alumno debe tener el laboratorio aprobado.

BIBLIOGRAFÍA

- ⇒ OMAR VALERO "Introducción a los Sistemas Digitales" Edit. 2001.
- ⇒ JORGE BERNADAS "Circuitos Secuenciales, Diseño y Análisis" Edit. 2000.
- ⇒ JOHN F. WAKERLY "Diseño digital principios y prácticas" Prentice Hall, 1992.
- ⇒ RONALD J.TOCCI. "Sistemas digitales, principios y aplicaciones" Prentice Hall, 1996.
- ⇒ JOHN P. HAYES "Introducción al diseño lógico digital"- Addison/Wesley iberoamericana,1997.
- ⇒ THOMAS L. FLOYD "Fundamentos de Sistemas Digitales" Prentice Hall, Sexta edición,1997.
- ⇒ DANIEL D. GAJSKI "**Principles of Digital Design**" Prentice Hall, 1997.
- ⇒ C. E. STRANGIO "Electrónica Digital"- Iberoamericana, 1984.
- ⇒ HEBERT TAUB "Circuitos digitales y Microprocesadores" Mc. Graw Hill, 1982.
- ⇒ FREDERICK J. HILL. GERALD R. PETERSON "Introduction to switching theory&logical"- John Weley, 3ra edition, 1981.
- ⇒ M. MORRIS MANO. "Lógica Digital y Diseño de Computadores" Editorial Prentice/Hall Internacional.
- ⇒ Manuales de dispositivos y Microprocesadores comerciales.
- ⇒ Manuales de Software Comercial. (Ensambladores, Enlazadores, Simuladores).